On the Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces

نویسندگان

  • JEFF CHEEGER
  • BRUCE KLEINER
چکیده

We consider metric measure spaces satisfing a doubling condition and a Poincaré inequality in the upper gradient sense. We show that the results of [Che99] on differentiability of real valued Lipschitz functions and the resulting bi-Lipschitz nonembedding theorems for finite dimensional vector space targets extend to Banach space targets having what we term a good finite dimensional approximation. This class of targets includes separable dual spaces. We also observe that there is a straightforward extension of Pansu’s differentiation theory for Lipschitz maps between Carnot groups, [Pan89], to the most general possible class of Banach space targets, those with the Radon-Nikodym property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property

In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...

متن کامل

An Example of a Differentiability Space Which Is Pi-unrectifiable

We construct a (Lipschitz) differentiability space which has at generic points a disconnected tangent and thus does not contain positive measure subsets isometric to positive measure subsets of spaces admitting a Poincaré inequality. We also prove that l-valued Lipschitz maps are differentiable a.e., but there are also Lipschitz maps taking values in some other Banach spaces having the Radon-Ni...

متن کامل

On Fréchet differentiability of Lipschitz maps between Banach spaces

A well-known open question is whether every countable collection of Lipschitz functions on a Banach space X with separable dual has a common point of Fréchet differentiability. We show that the answer is positive for some infinite-dimensional X. Previously, even for collections consisting of two functions this has been known for finite-dimensional X only (although for one function the answer is...

متن کامل

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Metric differentiability of Lipschitz maps defined on Wiener spaces

This note is devoted to the differentiability properties of H-Lipschitz maps defined on abstract Wiener spaces and with values in metric spaces, so we start by recalling some basic definitions related to the Wiener space structure. Let (E, ‖ · ‖) be a separable Banach space endowed with a Gaussian measure γ. Recall that a Gaussian measure γ on E equipped with its Borel σ−algebra B is a probabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006